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Interdrop coalescence with mass transfer: comparison
of the approximate drainage models with numerical results
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Abstract

The partially mobile, plane-film model developed to describe film drainage and rupture during coalescence in liquid–liquid dispersions
is extended to take account of interfacial-tension gradients generated by mass transfer. The resulting Marangoni forces are predicted to
greatly accelerate film drainage (which in general corresponds to dispersed to continuous phase transfer) and to diminish film drainage in
the negative case. The first model is based on the approximation of constant pressure and interfacial tensions outside the film. The pre-
dictions from this model agrees with observations and available numerical data, in the case of mass transfer from dispersed to continuous
phase. While for mass transfer from continuous to dispersed phase, a second model is proposed, in this case the first model is adapted to
take account of the location of the region of maximum concentration gradients, which moves radially outwards as a result of the growth
of the continuous phase-concentration boundary layers. At large times, the new model predicts an asymptotic return to the drainage rate
in the absence of mass transfer.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

While both the nature and the mechanism of the influence
of mass transfer on drop coalescence in liquid–liquid dis-
persions are accepted (see e.g. Kleczek et al. [1], Gourdon
and Casamatta [2]), except Saboni et al. [3], no quantita-
tive models—even approximate ones—appear to have been
developed. This is perhaps not surprising if one recalls that
the requisite models in the absence of mass transfer are rel-
atively recent.

For pure systems, numerical studies of the coupled pro-
cesses of drop deformation and film drainage under the
action of a constant interaction force have been carried
out by Yiantsios and Davis [4] in the limits of immobile
and partially mobile interfaces. The term partial mobility is
used to indicate that drainage is controlled by the motion of
the interfaces (this motion in turn being limited by viscous
forces exerted by the drop phase), the contribution of the
Poiseuille flow with respect to the interfaces being negli-

∗ Corresponding author. Tel.:+33-2-33-77-11-72;
fax: +33-2-33-77-11-78.
E-mail addresses:asaboni@aol.com, ltp@stlo.unicaen.fr (A. Saboni).

gible. This is the most important regime from a practical
point of view, full mobility or immobility arising only for
extreme viscosity ratios (Abid and Chesters [5]). The ad-
ditional influence of van der Waals forces, leading to film
rupture in finite drainage time has been studied numerically
in the immobile case (Yiantsios and Davis [6]) and in the
partially mobile case (Saboni et al. [7]). The case of con-
stant approach velocity of the drops has also been studied
in the partially mobile case, with and without van der Waals
forces (Abid and Chesters [5]).

In the presence of mass transfer, a numerical model of the
drainage of liquid films between drops undergoing a constant
interaction force has been developed (Saboni et al. [3]). The
mathematical problem consisting of the coupled equations
of flow and diffusion in each phase, subject to the boundary
conditions at the interface, together with those provided by
the interaction characteristics of the drops. The situation
considered is that of partially mobile drainage, under the
action of a constant force and in the absence of van der Waals
forces. Numerical solutions were obtained for both positive
and negative values of Marangoni parameter (corresponding
to solute transfer both to and from the drops) for fixed,
physically pertinent values of the other parameters, including
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Nomenclature

a film radius
a′ a/Req
A Hamaker constant
c parameter defined by Eq. (5)
C solute concentration (mass fraction)
C0 C-value adjacent to interface
�C∗ driving concentration difference for

mass transfer
D molecular diffusivity
D′ modified diffusion coefficient
f acceleration/deceleration factor
F interaction force exerted by one drop

on another
Fnum numerically instantaneous acceleration/

deceleration factors
F1, F2 instantaneous acceleration/deceleration

factors predicted by models I and II
Fσ , Fp, Fw force per unit volume of film due,

respectively, to gradients of interfacial
tension, gradients of pressure and
van der Waals forces

h film thickness
hc critical film-rupture thickness
hcen thickness at film center
hflat film thickness at which the drops

become flattened
hM film thickness corresponding to

Marangoni-accelerated rupture
hmin minimum film thickness
h0 initial film thickness
hδ film thickness, 2δ, at location where

concentration boundary layers meet
Hc dimensionless rupture thickness
k1–k3 constants of order unity
K partition coefficient dCd,0/dC0
m mass flux through the interface
Ma Marangoni number
p film pressure
P transformed partition coefficient
Pe Peclet number
r radial coordinate
rdcmax r-value corresponding to maximum

of ∂C0/∂r
rhmin r-value corresponding tohmin
R drop radius
Req equivalent radius, 2/(R−1

1 + R−1
2 )

S area of the material element of the
interface

t time
tc time to drain to critical film-rupture

thickness,hc
ti interaction time of colliding drops
T dilation time scale

u radial velocity of the draining film
U interface velocity
V approach velocity of undeformed

portions of drops
z axial coordinate; distance perpendicular

to interface
Z dimensionless group determining the

deceleration factor

Greek letters
δ concentration boundary layer thickness
µ dynamic viscosity
ρ density
σ interfacial tension
σ eff effective interfacial tension
�σ σ difference between film and outer region
τ shear stress exerted on the interface
Σ film tension

Subscripts
d pertaining to the dispersed phase
0 in the absence of mass transfer
∞ in the bulk phase far from the interface

Superscript
∗ transformed variable, as defined in the text

a large Peclet number for which the diffusion boundary layer
within the drop is thin, thereby somewhat simplifying the
equations to be solved.

Mass transfer from the dispersed to the continuous phase
has been found to accelerate the process of film drainage
and hence to increase the probability of coalescence during
drop collisions. Mass transfer in the reverse direction re-
tards drainage and reduces the coalescence probability. The
effect of interphase mass transfer on film drainage arises
from the extra (“Marangoni”) forces generated by gradi-
ents of interfacial tension, associated with variations of the
solute concentration over the interface. Thus, if transfer is
from dispersed to continuous phase the thin film separating
the drops rapidly comes to equilibrium with the high solute
concentration in the drop while the interface outside the
film takes on a concentration value intermediate between
that in the drop and in the continuous phase. If, as usually
is the case, the interfacial tension is a decreasing function
of the interfacial concentration, the interfacial tension in the
film will be lower than that outside the film. The resulting
gradient of interfacial tension produces a tangential force
on the interface which accelerates the radial motion of the
film and so reduces the drainage time. If the mass transfer
is in the opposite direction, the interfacial concentration in
the film will be very low and the effect will be reversed.

While the numerical results are encouraging vis a vis the
modeling of coalescence processes in systems undergoing
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mass transfer, it should be emphasized that the devel-
oped theoretical and computational framework concerns
solutes exhibiting no surface activity. In practice, one of
the two phases is almost always aqueous and most solutes
with sufficient affinity to be appreciably soluble in both
phases (alcohols, organic acids, etc.) are amphipathic to
a greater or lesser extent. The resulting surface activity
leads to additional Marangoni effects which always retard
drainage. The net effect ofD → C transfer could then
be either coalescence promotion or reduction, depending
on the degree of surface activity of the transferring solute.
While the incorporation of surface activity in the govern-
ing equations is relatively simple, it introduces at least one
further dimensionless parameter. If the simulation of film
rupture is included—as ultimately it must be—the number
of computations required to explore this six-dimensional
parameter-space is clearly prohibitively great. Two options
then remain if coalescence is to be modeled as a local
process within an overall simulation of the two phase flow
concerned:

(a) Compute the drainage time, and thence the coalescence
probabilities, at each point in the system as function of
local conditions.

(b) Develop approximate models for the drainage time as
a function of the parameters concerned and then use
the simulations as “numerical experiments” to test and
refine these models.

At the present time, option (a) is completely excluded
by limitations in computational power. An example of
option (b) in the four-parameter case is the aim of this
paper.

2. Approximate drainage models

We consider two drops of the same Newtonian fluid sus-
pended in another Newtonian fluid, which approach each
other along the line of their centers at a constant force. Var-
ious regimes of drainage may be distinguished depending
on the rigidity and mobility of the interface [8]. Here we
consider only the drainage between deformable partially
mobile interfaces. We consider also that the deformable
part of the drop is very small in comparison with the drop
radius. This is not as restrictive as it appears since only for
gentle collisions is drainage typically rapid enough for coa-
lescence to occur. So the partially mobile, plane-film model
[8] developed to describe film drainage and rupture during
coalescence in liquid–liquid dispersions, is extended to take
account of interfacial-tension gradients generated by mass
transfer.

2.1. In the absence of mass transfer

In the absence of mass transfer (pure liquid–liquid sys-
tems), Chesters [8] introduced a parallel-film model (Fig. 1)

Fig. 1. Notation for plane parallel-film models.

describing drainage between colliding drops. The obtained
expression is

2µdrk1

ah2

(
−dh

dt

)
= Fp = −∂p

∂r
(1)

whereh is the film thickness, dh/dt the thinning rate,µd the
drop viscosity,r the radial coordinate,p the pressure,Fp the
radial pressure force per unit film volume,k1 the constant
of order unity anda is a measure of the film radius related
to the interaction force by

F =
∫ larger

0
2πpr dr = πa2 2σ0

Req
(2)

whereσ 0 is a characteristic value of the interfacial tension
and the equivalent radius,Req, is defined by

2

Req
= 1

R1
+ 1

R2
(3)

whereR1 andR2 are the radii of the two drops.

2.2. In the presence of mass transfer

2.2.1. The variation of interfacial concentration
Once the film thickness is well belowhδ, the film con-

centration will tend towards equilibrium with the drop, i.e.
Cd,0 will tend towardsCd,∞ so that

C0 = Cd,∞
K

(4)

Outside the film, however,C0 will still be given by (Appen-
dices A and B):

C0 + c = C∞ + c + PCd,∞/K
1 + P

(5)

where P is the transformed partition parameter given by
(B.9)

Thus interfacial concentration variation from the inside to
the outside of the film is:

�C∗
0 = (C∗

0)ext − (C∗
0)film = C∗∞−C∗

d,∞
1+P = −�C∗

1+P (6)
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whereC∗, C∗
d and�C∗ are defined as

C∗ = C, C∗
d = Cd

K
, �C∗ = C∗

d,∞ − C∗
∞ (7)

2.2.2. Model I
In the presence of mass transfer, the variation of species

concentration over the interface engenders a corresponding
variation in the interfacial tension. The variation of the in-
terfacial tension produces a net tangential force per unit
area,τσ

τσ = gradσ (8)

The radial force per unit volume of the film is consequently

Fσ = 2 gradσ

h
∼ 2�σ

ah
∼ 2�C∗

0

ah

dσ

dC∗
0

∼ − 2�C∗

ah(1 + P)

dσ

dC0
(9)

where

�σ = − �C∗

1 + P

dσ

dC0
(10)

Fσ must be included on the force balance

2µdrk1

ah2

(
−dh

dt

)
= Fp + Fσ = −∂p

∂r
+ 2

h

∂σ

∂r

∼ �p

a
+ 2

h

�σ

a
∼ 2σ

Req
+ 2

h

�σ

a
(11)

which integrate with respect tor (limits of integration are 0
and a) to give (model I):

k1µda

h2

(
−dh

dt

)
∼ 2σ

Req
+ 2�σ

h
(12)

Marangoni drainage is seen to dominate (i.e.Fσ > Fp) if
h < hM, where

hM = −Req�C
∗

1 + P

1

σ

dσ

dC0
or hM = Req

(
�σ

σ

)
(13)

indicating that extremely small variations in interfacial ten-
sion are sufficient for Marangoni effect to dominate in the
final stages of drainage.

2.2.3. Model II: modified film drainage
The plane film for coalescence under a constant force

in the presence of mass transfer (model I) is based on the
approximation of constant pressure and interfacial tension
in the region outside the film. In reality, the region in which
σ changes from a value corresponding to approximate
equilibrium between film and drop to an approximately
constant external value will be that in which the two con-
tinuous phase-concentration boundary layers meet. Since
the thickness of these layers grows with time, this region
will tend to move outside the film, whereh > hmin and
the term�σ/hmin will then overestimate the influence of

the mass transfer. This effect offers a possible explanation
of the fact that the model I predicts complete blockage of
coalescence by moderate levels of mass transfer from con-
tinuous to dispersed phase, whereas both experiment and
numerical simulation indicate merely a moderate increase
in the drainage times.

The modified film drainage law is once more obtained by
integrating the force balance on a film element with respect
to r

k1µda

h2

(
−dh

dt

)
∼ 2σ

Req
+ 2�σ

hδ
(14)

The Marangoni term 2/h (∂σ /∂r), however, is now supposed
significant only in a narrow range ofr-values in the regions
whereh = hδ and its integral is thus given by 2�σ /hδ (hδ
is given in Appendix D), yielding

k1µda

h2

(
−dh

dt

)
∼ 2σ

Req
+ 2�σ

k2(Dt)1/2
(15)

wherek2 is a constant in the order of 1. In contrast with
(12), the Marangoni term in (15) becomes weaker as time
progress, drainage tending asymptotically to the rate in the
absence of mass transfer.

Now integrating with respect tot, (15) yields

k1µda

(
1

h
− 1

h0

)
= 2σ

Req
t + 2�σ

k2

(
t

D

)1/2

(16a)

or

k1µda

h
= 2σ

Req
t + 2�σ

k2

(
t

D

)1/2

(16b)

provided thah 	 h0.

3. Comparison of drainage models I and II with
numerical results

3.1. Numerical approach

Details of the theory involved in the calculation of the
drainage of partially mobile liquid films between drops un-
dergoing a constant interaction force in the presence of mass
transfer are given by Saboni et al. [3]. A brief summary is
given in this paper. The mathematical problem consisting of
the coupled equations of flow and diffusion in each phase,
subject to the boundary conditions at the interface, together
with those provided by the interaction characteristics of the
drops. Numerical solutions were obtained for both positive
and negative values of Marangoni parameter (corresponding
to solute transfer both to and from the drops).

Expressed in terms of transformed variables

r∗ = r

Reqa′ , h∗ = h

Reqa′2 , t∗ =
(
a′σ
Reqµd

)
t,

a′ = a

Req
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the equations governing drainage containing four dimen-
sionless parameters given as

Ma= �C∗

a′2
1

σ

dσ

dC0
, Pe= (a′)5Reqσ0

µdD
,

Ped = (a′)3Reqσ0

µdDd
, P = K

ρdD
′
d

√
D

ρD′√Dd

Ma represents the influence of Marangoni forces,Pe a
weighted Peclet number for the continuous phase based
on Req and the characteristic velocity,σ /µ, and weighted
by the factor (a′)5. Ped represents a Peclet number
for the dispersed phase, it governs the relative impor-
tance of diffusion and convection and in particular the
relative thickness of the concentration boundary layer.
P, governs the interfacial concentration in the external
region.

The starting point for the computation is taken as the
maximum value ofPeconsistent with the requirement ofa′
to be small, corresponding toa′ = 0.1, R = 1 mm, σ0 =
2.5 × 10−2 N/m, µd = 10−3 Pa s,D = 10−9 m2/s, yielding
Pe= 250. In the simplest case, in whichρd = ρ,Dd = D,
andK = 1, this situation then yieldsPed = 2.5 × 104 and
P = 1. Since−(1/σ)(dσ/dC) is of order 1, the value ofMa
explored in the present simulations (once morea′ = 0.1)
correspond toMa = −100�C∗.

In the absence of mass transfer, Fig. 2 shows the process
of film formation which involves flattening followed by the
development of dimples. In the presence of mass transfer, the
effects are illustrated in Figs. 3 and 4, which may be com-
pared with the neutral case (Fig. 2). The resulting drainage
rates, in the presence of mass transfer, are shown in Figs. 5
and 6, together with the neutral case and other parameters

Fig. 2. Dimensionless film thickness,h∗, as a function of dimensionless radial position,r∗, and dimensionless time,t∗, in the absence of van der Waals
forces and mass transfer.

combination. In the studied cases flattening precedes the
onset of Marangoni effects, the thickness of the continuous
phase-concentration boundary layers still being less than the
film thickness at this point. Thereafter, the boundary layers
meet in the region of minimum film thickness. The result
is an acceleration of the local drainage rate in the case of
negative Marangoni numbers, leading to an intensification
of the dimple (Figs. 3 and 5), while for positiveMa-values
liquid is pulled into this region suppressing dimple devel-
opment (Figs. 4 and 6). For the larger negative Marangoni
number(Ma = −1), final drainage rates are two orders of
magnitude higher than for the same film thickness in the
neutral case, while forMa = +1 drainage is completely ar-
rested. Assuming as discussed in the preceding paragraph,
that Ma is of order of 100�C∗, this dramatic Marangoni
effect occurs at concentrations differences of a few
percent.

The picture provided by the computations is consis-
tent both with the pulsed column experiments discussed
in Section 1 and with the experiments of Kourio and
co-workers [9,10]. The mass transferD → C strongly
promotes coalescence andC → D transfer reduces it.
The latter effect was found by Kourio to be relatively
weak, however, drainage times forC → D transfer are
greater, but of the same order, as those in the absence
of mass transfer. Additional computations, using other
values of the four parameters, suggest that the arrest of
drainage in the present case is only temporary (at higher
time the equilibrium between the two phases is reached),
final drainage rates being close to those in the absence of
mass transfer. As the overall drainage time is dominated
by the final stages in many cases, this time is only mildly
increased
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Fig. 3. Dimensionless film thickness,h∗, as a function of dimensionless radial position,r∗, and dimensionless time,t∗, in the presence of mass transfer
for Ma = −1,Pe= 250,Ped = 25 000 andP = 1 (D → C).

3.2. Expression of the models I and II in transformed
variables

Expressed in terms of transformed variables used in the
numerical simulations (12) and (15) become

− k1

2h∗2
min

dh∗
min

dt∗
= 1 − Ma

(1 + P)h∗
min

= F1 (12*)

− k1

2h∗2
min

dh∗
min

dt∗
= 1 − Ma Pe1/2

2k2(1 + P)t∗1/2
= F2 (15*)

Fig. 4. Dimensionless film thickness,h∗, as a function of dimensionless radial position,r∗, and dimensionless time,t∗, in the presence of mass transfer
for Ma = 1,Pe= 250,Ped = 25 000 andP = 1 (C → D).

where F1 and F2 denote the instantaneous drainage rate
relative to that in the absence of mass transfer.

3.3. Drainage in the absence of mass transfer: the value
of k1

The next step is to obtain the value ofk1 from numerical
results in the absence of mass transfer, for which (12*) and
(15*) reduce to

− 1

h∗2
min

dh∗
min

dt∗
= 2

k1
(17)
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Fig. 5. Dimensionless minimum film thickness,h∗
min, versus dimensionless

time, t∗, in the presence of mass transfer, for different values ofMa,
Pe, Ped and P, in the case of mass transfer occurring from dispersed to
continuous phase.

Fig. 6. Dimensionless minimum film thickness,h∗
min, versus dimensionless

time, t∗, in the presence of mass transfer, for different values ofMa, Pe,
Ped and P, in the case of mass transfer occurring from continuous to
dispersed phase.

Table 1
Variation ofh∗

min and related quantities during film drainage. Thet∗ origin
has chosen to correspond with the onset of flattening aroundhmin = 0.28

t∗ h∗
cen h∗

min r∗min −dh∗
min/dt

∗ −(1/h∗2
min)

(dh∗
min/dt

∗)
−4 2.35 2.35 0 2.05 0.371
−3 1.051 1.051 0 0.7399 0.670
−2 0.5723 0.5723 0 0.2915 0.890
−1 0.3757 0.3757 0 0.1285 0.910

0 0.2830 0.2813 0.451 0.07289 0.921
10 0.1246 0.06587 1.187 0.005111 1.178
20 0.01012 0.03969 1.187 0.001415 0.898
30 0.08894 0.02974 1.187 0.0007075 0.800
40 0.08085 0.02421 1.187 0.0004512 0.770
50 0.07476 0.02033 1.187 0.0003343 0.809
60 0.06991 0.01734 1.187 0.0002674 0.889
70 0.06586 0.01492 1.187 0.0002192 0.985
80 0.06239 0.01293 1.187 0.0001818 1.087

The results (Table 1) indicate that(1/h∗2
min)(dh

∗
min/dt

∗) is
indeed fairly constant, tough a slow oscillation is observable.
This may be due to the fact that the value ofh∗

min, from
which the value of dh∗

min/dt
∗ were computed, are those in

the grid point having the smallesth∗, which may or may
not be close to the exact location of minimumh∗. Following
flattening, the mean value of(1/h∗2

min)(dh
∗
min/dt

∗) is about
0.926, corresponding tok1 = 2.16.

3.4. Drainage in the presence of mass transfer

3.4.1. Transfer from dispersed to continuous phase
Table 2a and b present the results for two values ofMa

−0.5 and−1 for the above values ofPe, Ped andP (250,
2.5 × 104 and 1, respectively).Fnum denotes the instanta-
neous value of dh∗

min/dt
∗, relative to that in the absence of

mass transfer (calculated from numerical simulations).r∗hmin
andr∗dcmin denote the respective radii at whichh∗ exhibits a
minimum and∂C0/∂r a maximum.

While the numerical values exhibit a certain oscillation,
more pronounced for the largerMa-value, it is clear that they
correspond well with model I in the later stages of drainage.
The poor initial correspondence may be ascribed to the fact
that concentration boundary layers have barely met, so that
the approximation of equilibration between film and drop is
not yet applicable. This effect is weaker for smaller value of
Pe, the initial thickness of the concentration boundary layers
being (Appendix C):

δ∗ ∼ 1

2

(
µdD

Reqσ(a′)5

)1/3

∼ 1

2Pe1/3
(18)

Table 2c–e provides additional data for different values of
the parametersPe, Ped and P. The results again provide
evidence for the validity of model I if allowance for the nu-
merical oscillations is made. In addition, Table 2e confirms
that the correspondence with the model is observed earlier
for smallerPe-value.
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Table 2
Comparison of the instantaneous accelerator factor,Fnum, due to mass transfer from dispersed to continuous phase with the valuesF1 and F2 obtained
from the approximate models I and II

h∗
cen h∗

min −dh∗
min/dt

∗ r∗hmin r∗dcmax t∗ Fnum F1 F2(k2 = 1)

(a) Ma = −0.5,Pe= 250,Ped = 2.5 × 104, P = 1
2.35 2.35 2.05 0 −4
1.05 1.05 0.730 0 −3
0.570 0.570 0.290 0 −2
0.375 0.375 0.129 0 −1
0.282 0.280 0.0730 0.450 0 1.01 1.89
0.231 0.218 0.0500 0.734 1.190 1 1.05 2.15 2.98
0.200 0.175 0.0400 0.950 1.320 2 1.41 2.43 2.40
0.180 0.142 0.0264 0.950 1.320 3 1.41 2.76 2.14
0.165 0.116 0.0220 1.065 1.450 4 1.77 3.16 1.99
0.155 0.0970 0.0200 1.190 1.450 5 2.30 3.58 1.89
0.148 0.0970 0.0148 1.190 1.450 6 1.70 3.58 1.81
0.144 0.067 0.0100 1.190 1.450 7 2.41 4.73 1.75
0.141 0.0540 0.0147 1.320 1.450 8 5.44 5.67 1.70
0.140 0.0410 0.0100 1.320 1.600 9 6.42 7.10 1.66
0.140 0.0330 0.0070 1.320 1.600 10 6.94 8.58 1.63
0.142 0.0266 0.0047 1.320 1.600 11 7.17 10.4 1.60

(b) Ma = −1,Pe= 250,Ped = 2.5 × 104, P = 1
2.35 2.35 2.05 0 −4
1.05 1.051 0.74 0 −3
0.570 0.570 0.292 0 −2
0.370 0.375 0.130 0 −1
0.280 0.280 0.0730 0.450 0 1.01 2.79
0.230 0.220 0.0510 0.730 1.190 1 1.14 3.27 4.95
0.190 0.170 0.0420 0.950 1.320 2 1.57 3.94 3.79
0.180 0.140 0.0350 1.00 1.450 3 1.93 4.57 3.28
0.170 0.100 0.0230 1.00 1.450 4 2.48 6.00 2.98
0.160 0.0830 0.0210 1.19 1.450 5 3.29 7.02 2.77
0.150 0.0630 0.0260 1.32 1.450 6 7.07 8.94 2.61
0.150 0.0420 0.0150 1.32 1.600 7 9.18 12.9 2.49

(c) Ma = −1,Pe= 250,Ped = 2.25× 105, P = 1
0.282 0.280 0.07289 0.451 0 1.01 1.89
0.154 0.106 0.0150 1.06 1.32 5 1.44 3.36 1.89
0.131 0.0543 0.0063 1.19 1.45 10 2.31 5.60 1.63
0.136 0.0159 0.0064 1.32 1.45 15 27.3 16.7 1.51

(d) Ma = −1,Pe= 250,Ped = 2.25× 105, P = 3
0.282 0.280 0.0731 0.451 0 1.01 1.45
0.154 0.107 0.0148 1.06 1.32 5 1.40 2.17 1.44
0.127 0.0586 0.0058 1.19 1.45 10 1.82 3.13 1.31
0.121 0.0351 0.0050 1.32 1.45 15 4.38 4.56 1.26
0.125 0.0198 0.0028 1.32 1.45 19 7.71 7.48 1.23

(e) Ma = −1,Pe= 16 andPed = 4756, P = 1
0.276 0.273 0.0838 0.541 0 1.21 2.83
0.221 0.201 0.0630 0.839 1.32 1 1.68 3.49 4.95
0.188 0.147 0.0512 1.06 1.45 2 2.56 4.40 3.79
0.169 0.106 0.0353 1.19 1.59 3 3.39 5.72 3.28
0.157 0.0754 0.0274 1.32 1.59 4 5.20 7.63 2.98
0.151 0.0527 0.0336 1.45 1.74 5 13.1 10.5 2.77
0.149 0.0298 0.0136 1.45 1.74 6 16.5 17.8 2.61

3.4.2. Transfer from continuous to dispersed phase
Table 3a presents the results for the set parameters:Ma =

1,Pe = 16,Ped = 4756 andP = 1. The later stages of
drainage correspond reasonably well with model II, taking
k2 = 1. Based on the few data points in this region, it is not
possible to refine the value ofk2.

Results forMa = 1,Pe = 250,Ped = 2.5 × 104 and
P = 1 are presented in Table 3b. According to model II,F2
is negative (i.e. Marangoni effects causeh∗

min to increase)
if 0 < t∗ < Pe[Ma/2k2(1 + P)]2. In the case considered in
Table 3a, range of times for whichF2 is negative is small:
0< t∗ < 1, takingk2 = 1. For the case treated in Table 3b,
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Table 3
Film drainage for mass transfer from continuous to dispersed phase

h∗
cen h∗

min −dh∗
min/dt

∗ r∗hmin r∗dcmax t∗ Fnum F1 F2(k2 = 1)

(a) Ma = +1,Pe= 16,Ped = 4756, P = 1
0.289 0.288 0.0641 0.366 1.32 0 0.835 −0.74
0.173 0.165 0.00907 0.734 1.450 5 0.360 −2.03 0.553
0.108 0.106 0.00400 0.451 1.450 15 0.384 −3.7 0.742
0.0781 0.0761 0.00231 0.451 1.59 25 0.431 −5.6 0.8
0.0604 0.0563 0.00167 0.541 1.59 35 0.569 −7.9 0.831
0.0487 0.0415 0.00122 0.635 3.75 45 0.765 −11 0.851
0.0429 0.0334 0.00106 0.734 4.01 52 1.03 −14 0.861

(b) Ma = +1,Pe= 250,Ped = 2.5 × 104, P = 1
0.282 0.280 0.0730 0.450 0 1.01 −0.779
0.154 0.133 0.0074 0.949 1.31 5 0.337 −2.76 −0.766
0.120 0.114 0.0031 0.630 1.31 10 0.258 −3.39 −0.249
0.101 0.101 0.0027 0.21 1.31 15 0.259 −3.95 −0.020
0.0900 0.0900 0.00124 0 1.31 20 0.165 −4.56 0.117
0.0880 0.0880 −0.000 0 1.31 25 −0.00 −4.68 0.210
0.0930 0.0930 −0.000 0 1.31 30 −0.00 −4.10 0.278

however, Pe is much larger and the range of negative
F2-value becomes 0< t∗ < 15.6. Once more neglect-
ing the initial period of drainage, the numerical results do
qualitatively reflect this expectation,Fnum being falling be-
low zero in the final stage of the computations. The fact
that Fnum does not become strongly negative suggests that
positive values would soon reappear were the computation
further pursued. While a better match between model and
numerical results could be obtained by reducing the value
of k2 (thereby increasing thet∗ range for which the model
predicts negativeF2-value), this is probably not justified
since the concentration boundary layer thickness is proba-
bly of the same order as the film thickness throughout the
computation in view of the large value ofPe (see Eq. (18))
combined with the large values ofh∗

min.

3.4.3. Range of applicability of models I and II
While the numerical results provide satisfactory support

for model I in the cases of transfer from dispersed to con-
tinuous phase, a problem remains: model II contains no
specific assumptions about the direction of transfer and
might be expected to apply in all cases. The explanation
is provided by the value ofr∗hmin and r∗dcmax, illustrated
vividly by the results in Table 2e, as the region of maximum
interfacial concentration gradient move radially outwards
the location of minimum thickness follows. The associated
physical picture is as follows. As soon as the location of
maximum Marangoni forces moves beyond the edge of the
film, thinning accelerates in this region, which is promptly
incorporated in the film, so that the region of the maxi-
mum Marangoni force permanently coincides with that of
minimum film thickness as assumed in model I. The fact
that r∗dcmax is slightly larger thanr∗hmin is explained by the
fact that the Marangoni force per unit volume of the film is
given by (2/h)(∂σ /∂r), so that its maximum value is devel-
oped at smallerh∗-values (and hencer∗-values) than that
of (∂σ /∂r) (or equivalently, (∂C0/∂r)).

It is evident that for sufficiently small values of the
Marangoni parameterMa, or sufficiently large value of the
parameter determining boundary layer growth rates,Pe,
the zone of minimum film thickness will no longer be able
to keep up with the radial expansion of the zone of maxi-
mum interfacial concentration gradient and drainage will be
described by model II rather than model I. No information
on the location of this transition in parameter-space is pro-
vided by the available numerical results. It is conceivable
that when the transition results from a very smallMa-value,
the associated Marangoni effects are so weak as to be
negligible according to either model. Likewise, very small
values ofPemight arise as a result either of smalla′-values
(gentle collisions) or of largeµd/µ-values (largeµdD).
Predicted coalescence probabilities would then in all likeli-
hood remain closer to 1 or 0, respectively, whichever model
is applied. It is thus possible, though undemonstrated, that
model I suffices for all practical purposes whenever transfer
is from dispersed to continuous phase and this is assumed
to be the case in what follows. Numerical exploration of
the transition conditions is, however, desirable.

In the case of mass transfer from continuous to dispersed
phase, thinning is suppressed by Marangoni forces and there
is no driving force for the region of minimum film thickness
to follow that of maximum interfacial concentration gradi-
ent. Model II should therefore describe (the late stages of)
drainage in all cases.

4. The critical film rupture

4.1. Model I

Applying the same approach as in the absence of mass
transfer [8], the critical film-rupture thickness in the case of
Marangoni accelerated film drainage should be given by:

Fw ∼ Fp + Fσ (19)
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whereFw denotes the radial force per unit volume of film
due to the reduction of the film tension associated with van
der Walls forces:

Fw ∼ 1

h

�Σ

a
∼ A

4πah3
(20)

whereΣ is the film tension (= 2σ − A/4πh2), A the
Hamaker constant. Substituting (2), (10) and (20) into (19),
an implicit relation for the critical film-rupture thickness,hc,
is obtained:(
hc,0

hc

)3

= 1 + hM

hc
(21)

wherehc,0 denotes the value ofhc in the absence of mass
transfer

hc ∼
(

AReq

8πσ

)1/3

(22)

This approximate analytical expression were compared by
Saboni et al. [7] with complete numerical simulations in the
presence of van der Waals forces and in the absence of mass
transfer. It was found that expression (22) provide a good
first approximation for the critical film-rupture thickness.

In the case of Marangoni domination in the final stages
of drainage(hc 	 hm), (21) reduces to

hc =
(
h3

c,0

hM

)1/2

∼
(

A

8π�σ

)1/2

(23)

4.2. Model II

An approximate expression for the effective critical
film-rupture thickness is provided by the expression in the
absence of Marangoni effects

hc ∼
(
k3AReq

8πσ

)1/3

wherek3 ∼ 1 (24)

in which σ is replaced by the effective value obtained from
(15)

σeff ∼ σ

(
1 + Req�σ

2k2σ(Dt)1/2

)
(25)

combination of (24) and (25) now yields

k3AReq

8πσh3
c

= 1 + Req�σ

2k2σ(Dt)1/2
(26)

Expressed in terms of transformed variables (24) become

k3A
∗

2h∗3
c

= 1 − Ma Pe1/2

2k2(1 + P)(t∗c )1/2
(26*)

whereA∗ = A/4πσR2
eq(a

′)6

5. Drainage time

5.1. Model I

Eq. (12) may be expressed as

−T hM

h2

dh

dt
= 1 + hM

h
(27)

whereT = µda/2�σ In the constant case (a constant) and
for hM, (27) integrates to give

t = T ln

(
1 + (hM/h)

1 + (hM/hflat)

)
(28)

wheret denotes the time to drain from the onset of flattening
to the thicknessh.

The time,tc, to drain fromhflat to hc follows from (21) and
(27). To obtain an indication of the influence of Marangoni
forces, the drainage time,tc,0, is compared withtc for the
casehc 	 hM 	 hflat, in which an explicit expression is
provided by (23) and (27)

tc = 3

2
T ln

(
hM

hc,0

)
(29)

The drainage time in the absence of mass transfer is obtained
from (23) and (27) in the limit ofhM → 0

tc,0 = T
hM

hc,0
(30)

Accordingly

tc

tc,0
= 3

2

hc,0

hM
ln

(
hM

hc,0

)
(31)

This expression indicate earlier rupture forD → C mass
transfer. For instance, ifhM/hc,0 is equal to 10(tc/tc,0) is
equal to 0.35.

5.2. Model II

The value of the time,tc, to drain to rupture in the presence
of mass transfer follows from (15*) and (26*). In the limit
of no mass transfer the second term in the RHS of (15*) and
(26*) disappears

k1

2h∗
c,0

= t∗c,0 (150*)

k3A
∗

2h∗3
c,0

= 1 (260*)

Dividing (15*) by (150*) and (26*) by (260*) now yields:

1

fHc
= 1 − Z

f 1/2
(32)

1

H 3
c

= 1 − Z

2f 1/2
(33)



A. Saboni et al. / Chemical Engineering Journal 88 (2002) 127–139 137

with

Hc = hc

hc,0
(34)

and

Z = Ma Pe1/2

2k2(1 + P)(t∗c,0)1/2
(35)

wheretc,0 follows from (150*) and (260*), andf=tc/tc,0.
This expression indicates later rupture forC → D mass

transfer. For a given value of the parameterZ, (32) and (33)
are readily solved iteratively forf (and Hc). For example,
taking H c = 1 as a first approximation, (32) provides a
quadratic equation forf1/2 and (33) provides a better ap-
proximation toHc, etc. For instance, takingZ = 0.5, the
calculations givef = 1.55 andH c = 1.08, while forZ =
10 the calculations givef = 102 andH c = 1.26.

5.3. Coalescence probability

In the presence of mass transfer, the expression for the
coalescence probability [8,10,11]

P = exp

(
− tc
ti

)
(36)

becomes

P = exp

(
−f tc,0

ti

)
= (P0)

f (37)

whereP0 is the coalescence probability in the absence of
mass transfer. For a givenP0 [8], expression (37) can be
used when mass transfer is from dispersed to continuous
phase and also if mass transfer is from continuous to dis-
persed phase, making use of appropriate expressions for the
acceleration/deceleration factorf.

6. Conclusion

Two simple analytical models for predicting the influence
of interphase mass transfer on coalescence in liquid–liquid
dispersions were developed. The models describe drainage
and rupture of partially mobile films during coalescence in
the presence of mass transfer. The results obtained from
the analytical models were compared with a more sophisti-
cated model (numerical simulation results); within a certain
limit of accuracy, the two sets are in agreement. In the case
of Marangoni-accelerated drainage, corresponding typi-
cally to mass transfer from the dispersed to the continuous
phase(D → C), expressions have been derived for the
time required for drainage to rupture. Even relatively small
concentration differences are predicted to dramatically ac-
celerate drainage. In the reverse case of Marangoni-retarded
drainage (mass transfer from continuous to dispersed
(C → D)) the time required for drainage to rupture is en-
hanced. At large times, the model II predicts an asymptotic

return to the drainage rate in the absence of mass transfer.
The range of applicability of each model is considered and
expressions for the film rupture required for the coalescence
probability are developed which may be used in two phase
flow simulations.

Appendix A

A.1. Interface concentrations

The first interface condition assumes quasi-equilibrium
solute partition

dCd

dC
= K = constant (A.1a)

or

Cd = K(C + c) (c is a constant) (A.1b)

A.2. Influence of the velocity induced by mass transfer on
the mass flux trough the interface

The barycentric mixture velocity,u, is defined as

ρu = ρAuA + ρBuB (A.2)

where A refers to solute and B to solvent (be this the contin-
uous or the dispersed phase). With respect a reference frame
translating with a material point on the interface,u[0, 0,uz],
where thez-direction is that of the outward normal. At the
interface(uz)B = 0 and (A.2) yields

uz = ρA

ρ
(uz)A = C0(uz)A , z = 0 (A.3)

The difference between (uz)B and (uz)A is given by Fick’s
law

m = ρA[(uz)A − uz] = −ρD∂C
∂z

or

C[(uz)A − uz] = −D∂C
∂z

(A.4)

Elimination of (uz)A from (A.3) and (A.4) now leads to

(uz)0 = − D

1 − C0

∂C

∂z
(A.5)

which, with the help of (A.3) leads to

ρdD
′
d
∂Cd

∂z
= ρD′ ∂C

∂z
(A.6a)

where

D′ = D

1 − C0
(A.6b)

and

D′
d = Dd

1 −K(C0 + c)
(A.6c)
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Appendix B

B.1. Diffusion at a dilating interface

As preliminary, consider a semi-infinite region of liquid
with constant solute concentration,C0, at its plane boundary
and constant concentration,C∞ at z = ∞, wherez denotes
distance along the normal to the boundary. If the only source
of flow is that induced by a uniform dilation of the bound-
ary, which is transmitted by viscous action to the adjoining
liquid.

1

A

DA

Dt
= 1

T
(B.1)

whereA is area of material element of the interface. Then
thez-component of the velocity follows from continuity

1

A

dA

dt
= ∂ux

∂x
+ ∂uy

∂y
= −∂uz

∂z
(B.2a)

uz = − z

T
(B.2b)

Choosing the origin in a given material point on the bound-
ary, the diffusion equation is

∂C

∂t
+ u∇C = D∇2C (B.3)

at any point (0, 0,z) becomes

∂C

∂t
− z

T

∂C

∂z
= ∂2C

∂z2
(B.4)

In the special caseT = ∞ (non-dilating boundary), (B.4)
can be integrated analytically

C − C0

C0 − C∞
= 1 − erf

(
z

2
√

Dt

)
(B.5)

For a steady dilation(T = constant, ∂C/∂t = 0), (B.4)
yields

C − C0

C0 − C∞
= 1 − erf

(
z√
2DT

)
(B.6)

The preceding considerations can be extended to a steadily
dilating interface between semi-infinite regions of immis-
cible liquids. The concentration distributions in each phase
will again be given by (B.6), the valueC0 and Cd,0 be-
ing determined by the interface conditions (A.1) and (A.6).
Making use of (B.6), (A.6a) becomes

ρdD
′
d(Cd,0 − Cd,∞) = ρD′(C0 − C∞) (B.7)

which together with (A.1) yields

C0 + c = C∞ + c + P(Cd,∞)/K
1 + P

(B.8)

With the transformed partition parameter given by:

P = K
ρdD

′
d

√
D

ρD′√Dd
(B.9)

Appendix C

C.1. Concentration boundary layer thickness in the region
outside the film

Once the separation of two drops,h, becomes less than
2δ, the boundary condition,C = constant= C∞ at z = ∞,
ceases to be a good approximation and (Cd,0) rises/falls to-
wards (Cd,∞), while the interfacial concentration outside the
film is still given by (B.8). The onset of Marangoni effects,
driven by the resulting variation of interfacial tension, thus
corresponds to

hδ ∼ 2δ (C.1)

The value ofδ: Depending on whetherhδ is smaller or
larger thanhflat (the film thickness at which the drops be-
come flattened), the value of−dh/dt can either be approx-
imated as constant, corresponding to the approach velocity
of centers, or decreasing ash ∼ 2, corresponding to the
drainage law for partially mobile, flat film [8]. In the former
case,−h−1(dh/dt) increases ash−1, in the latter it decreases
ash+1.

At the transition pointhδ ∼ hflat,

−1

h

dh

dt
= constant (C.2)

Further from (B.2a,b)

1

T
= −�uz

�z
= −1

h

dh

dt

an application of the analytical solution for constantT then
yields

δ =
√
πD

2

−h
dh/dt

∼
√

−Dh

dh/dt
(C.3)

Forhδ > hflat, δ decreases with time and its value will there-
fore lag somewhat behind that given by (C.3). Conversely,
for hδ < hflat, δ will be somewhat smaller than the value
given by (C.3). In both cases, however, (C.3) should be valid
as an order of magnitude estimate.

Up to the point at which the film thicknesshδ is attained,
dh/dt will be approximated by the drainage law for drops
of constant interfacial tension. For cases in which the drops
are already flattened(hflat > hδ), this law is roughly [8]

dh

dt
∼ −2(2πσ/Req)

3/2

πµdF 1/2
h2 (C.4a)

or
dh

dt
∼ − 4σ

µdReqa
h2 (C.4b)

where a is a measure of the radius of the film,F =
πa2σ/Req, whereF is the drop interaction force. Combi-
nation of (C.3) and (C.4) yields(

2δ

h

)2

∼ µdDaReq

σh3
(C.5)
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The value of hδ:

hδ ∼ 2δ ∼
(
µdDaReq

σ

)1/3

(C.6)

Expressed in terms of the transformed variableshδ and δ
become

δ∗ ∼ 1

2

(
µdD

Reqσ(a′)5

)1/3

∼ 1

2Pe1/3
(C.7)

h∗ ∼
(

µdD

Reqσ(a′)5

)1/3

∼ 1

Pe1/3
(C.8)

Appendix D

D.1. Concentration boundary layer thickness in the region
outside the film

The concentration boundary layer thickness,δ, in the re-
gion outside the film depends on the dilation history of the
interface, which in turn depends on the Dh/Dt, h being linked
to the interfacial area of material element,S, via constancy
of the element’s volume,hS.

Dh/Dt is given by

Dh

Dt
= ∂h

∂t
+ u

∂h

∂r
(D.1)

The film velocity, u(r), in the outer region fellows from
continuity if h(r) is approximated as corresponding to a film
of negligible thickness, beyond which drops are undeformed

h = 0, r ≤ a (D.2)

h = r2 − a2

Req
, r ≥ a (D.3)

2π ruh = π(r2 − a2)V , r ≥ a (D.4)

whereV denotes the instantaneous approach velocity of the
undeformed portions of the drops

V = −∂h
∂t

(D.5)

Combination of (D.1)–(D.5) now yields

Dh

Dt
= V

(
−1 + r2 − a2

2rh
2
r

Req

)
(D.6)

Indicating the absence of dilation (h and henceSconstant)
If the continuous phase-concentration boundary layer

thickness,δ, is defined as(
∂C

∂z

)
z=0

= C∞ − C0

δ
(D.7)

then its value in the case of non-dilating interface is obtained
by differencing (B.5)

δ ∼
√
(Dt) (D.8)

and the film thickness,hδ, in the region where the concen-
tration boundary meet is thus given by

hδ ∼ 2
√
(Dt) (D.9)

(D.8) ignores the fact that at the onset of flattening(t = 0),
δ, is already non-zero. The associated error is small, how-
ever, as the overall drainage time is dominated by the final
stages of drainage for which (D.8) is acceptable.
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